\(\int \frac {\sqrt {a+b x^4}}{c+d x^4} \, dx\) [180]

   Optimal result
   Rubi [A] (verified)
   Mathematica [C] (warning: unable to verify)
   Maple [C] (warning: unable to verify)
   Fricas [F(-1)]
   Sympy [F]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 21, antiderivative size = 881 \[ \int \frac {\sqrt {a+b x^4}}{c+d x^4} \, dx=\frac {\sqrt {b c-a d} \arctan \left (\frac {\sqrt {b c-a d} x}{\sqrt [4]{-c} \sqrt [4]{d} \sqrt {a+b x^4}}\right )}{4 (-c)^{3/4} d^{3/4}}-\frac {\sqrt {-b c+a d} \arctan \left (\frac {\sqrt {-b c+a d} x}{\sqrt [4]{-c} \sqrt [4]{d} \sqrt {a+b x^4}}\right )}{4 (-c)^{3/4} d^{3/4}}+\frac {b^{3/4} \left (\sqrt {a}+\sqrt {b} x^2\right ) \sqrt {\frac {a+b x^4}{\left (\sqrt {a}+\sqrt {b} x^2\right )^2}} \operatorname {EllipticF}\left (2 \arctan \left (\frac {\sqrt [4]{b} x}{\sqrt [4]{a}}\right ),\frac {1}{2}\right )}{2 \sqrt [4]{a} d \sqrt {a+b x^4}}-\frac {\sqrt [4]{b} \left (\sqrt {b} \sqrt {-c}-\sqrt {a} \sqrt {d}\right ) (b c-a d) \left (\sqrt {a}+\sqrt {b} x^2\right ) \sqrt {\frac {a+b x^4}{\left (\sqrt {a}+\sqrt {b} x^2\right )^2}} \operatorname {EllipticF}\left (2 \arctan \left (\frac {\sqrt [4]{b} x}{\sqrt [4]{a}}\right ),\frac {1}{2}\right )}{4 \sqrt [4]{a} \sqrt {-c} d (b c+a d) \sqrt {a+b x^4}}-\frac {\sqrt [4]{b} \left (\sqrt {b}+\frac {\sqrt {a} \sqrt {d}}{\sqrt {-c}}\right ) (b c-a d) \left (\sqrt {a}+\sqrt {b} x^2\right ) \sqrt {\frac {a+b x^4}{\left (\sqrt {a}+\sqrt {b} x^2\right )^2}} \operatorname {EllipticF}\left (2 \arctan \left (\frac {\sqrt [4]{b} x}{\sqrt [4]{a}}\right ),\frac {1}{2}\right )}{4 \sqrt [4]{a} d (b c+a d) \sqrt {a+b x^4}}-\frac {\left (\sqrt {b} \sqrt {-c}+\sqrt {a} \sqrt {d}\right )^2 (b c-a d) \left (\sqrt {a}+\sqrt {b} x^2\right ) \sqrt {\frac {a+b x^4}{\left (\sqrt {a}+\sqrt {b} x^2\right )^2}} \operatorname {EllipticPi}\left (-\frac {\left (\sqrt {b} \sqrt {-c}-\sqrt {a} \sqrt {d}\right )^2}{4 \sqrt {a} \sqrt {b} \sqrt {-c} \sqrt {d}},2 \arctan \left (\frac {\sqrt [4]{b} x}{\sqrt [4]{a}}\right ),\frac {1}{2}\right )}{8 \sqrt [4]{a} \sqrt [4]{b} c d (b c+a d) \sqrt {a+b x^4}}-\frac {\left (\sqrt {b} \sqrt {-c}-\sqrt {a} \sqrt {d}\right )^2 (b c-a d) \left (\sqrt {a}+\sqrt {b} x^2\right ) \sqrt {\frac {a+b x^4}{\left (\sqrt {a}+\sqrt {b} x^2\right )^2}} \operatorname {EllipticPi}\left (\frac {\left (\sqrt {b} \sqrt {-c}+\sqrt {a} \sqrt {d}\right )^2}{4 \sqrt {a} \sqrt {b} \sqrt {-c} \sqrt {d}},2 \arctan \left (\frac {\sqrt [4]{b} x}{\sqrt [4]{a}}\right ),\frac {1}{2}\right )}{8 \sqrt [4]{a} \sqrt [4]{b} c d (b c+a d) \sqrt {a+b x^4}} \]

[Out]

1/4*arctan(x*(-a*d+b*c)^(1/2)/(-c)^(1/4)/d^(1/4)/(b*x^4+a)^(1/2))*(-a*d+b*c)^(1/2)/(-c)^(3/4)/d^(3/4)-1/4*arct
an(x*(a*d-b*c)^(1/2)/(-c)^(1/4)/d^(1/4)/(b*x^4+a)^(1/2))*(a*d-b*c)^(1/2)/(-c)^(3/4)/d^(3/4)+1/2*b^(3/4)*(cos(2
*arctan(b^(1/4)*x/a^(1/4)))^2)^(1/2)/cos(2*arctan(b^(1/4)*x/a^(1/4)))*EllipticF(sin(2*arctan(b^(1/4)*x/a^(1/4)
)),1/2*2^(1/2))*(a^(1/2)+x^2*b^(1/2))*((b*x^4+a)/(a^(1/2)+x^2*b^(1/2))^2)^(1/2)/a^(1/4)/d/(b*x^4+a)^(1/2)-1/4*
b^(1/4)*(-a*d+b*c)*(cos(2*arctan(b^(1/4)*x/a^(1/4)))^2)^(1/2)/cos(2*arctan(b^(1/4)*x/a^(1/4)))*EllipticF(sin(2
*arctan(b^(1/4)*x/a^(1/4))),1/2*2^(1/2))*(a^(1/2)+x^2*b^(1/2))*(b^(1/2)*(-c)^(1/2)-a^(1/2)*d^(1/2))*((b*x^4+a)
/(a^(1/2)+x^2*b^(1/2))^2)^(1/2)/a^(1/4)/d/(a*d+b*c)/(-c)^(1/2)/(b*x^4+a)^(1/2)-1/8*(-a*d+b*c)*(cos(2*arctan(b^
(1/4)*x/a^(1/4)))^2)^(1/2)/cos(2*arctan(b^(1/4)*x/a^(1/4)))*EllipticPi(sin(2*arctan(b^(1/4)*x/a^(1/4))),1/4*(b
^(1/2)*(-c)^(1/2)+a^(1/2)*d^(1/2))^2/a^(1/2)/b^(1/2)/(-c)^(1/2)/d^(1/2),1/2*2^(1/2))*(a^(1/2)+x^2*b^(1/2))*(b^
(1/2)*(-c)^(1/2)-a^(1/2)*d^(1/2))^2*((b*x^4+a)/(a^(1/2)+x^2*b^(1/2))^2)^(1/2)/a^(1/4)/b^(1/4)/c/d/(a*d+b*c)/(b
*x^4+a)^(1/2)-1/8*(-a*d+b*c)*(cos(2*arctan(b^(1/4)*x/a^(1/4)))^2)^(1/2)/cos(2*arctan(b^(1/4)*x/a^(1/4)))*Ellip
ticPi(sin(2*arctan(b^(1/4)*x/a^(1/4))),-1/4*(b^(1/2)*(-c)^(1/2)-a^(1/2)*d^(1/2))^2/a^(1/2)/b^(1/2)/(-c)^(1/2)/
d^(1/2),1/2*2^(1/2))*(a^(1/2)+x^2*b^(1/2))*(b^(1/2)*(-c)^(1/2)+a^(1/2)*d^(1/2))^2*((b*x^4+a)/(a^(1/2)+x^2*b^(1
/2))^2)^(1/2)/a^(1/4)/b^(1/4)/c/d/(a*d+b*c)/(b*x^4+a)^(1/2)-1/4*b^(1/4)*(-a*d+b*c)*(cos(2*arctan(b^(1/4)*x/a^(
1/4)))^2)^(1/2)/cos(2*arctan(b^(1/4)*x/a^(1/4)))*EllipticF(sin(2*arctan(b^(1/4)*x/a^(1/4))),1/2*2^(1/2))*(a^(1
/2)+x^2*b^(1/2))*(b^(1/2)+a^(1/2)*d^(1/2)/(-c)^(1/2))*((b*x^4+a)/(a^(1/2)+x^2*b^(1/2))^2)^(1/2)/a^(1/4)/d/(a*d
+b*c)/(b*x^4+a)^(1/2)

Rubi [A] (verified)

Time = 0.67 (sec) , antiderivative size = 881, normalized size of antiderivative = 1.00, number of steps used = 9, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.238, Rules used = {415, 226, 418, 1231, 1721} \[ \int \frac {\sqrt {a+b x^4}}{c+d x^4} \, dx=-\frac {(b c-a d) \left (\sqrt {b} x^2+\sqrt {a}\right ) \sqrt {\frac {b x^4+a}{\left (\sqrt {b} x^2+\sqrt {a}\right )^2}} \operatorname {EllipticPi}\left (\frac {\left (\sqrt {b} \sqrt {-c}+\sqrt {a} \sqrt {d}\right )^2}{4 \sqrt {a} \sqrt {b} \sqrt {-c} \sqrt {d}},2 \arctan \left (\frac {\sqrt [4]{b} x}{\sqrt [4]{a}}\right ),\frac {1}{2}\right ) \left (\sqrt {b} \sqrt {-c}-\sqrt {a} \sqrt {d}\right )^2}{8 \sqrt [4]{a} \sqrt [4]{b} c d (b c+a d) \sqrt {b x^4+a}}-\frac {\sqrt [4]{b} (b c-a d) \left (\sqrt {b} x^2+\sqrt {a}\right ) \sqrt {\frac {b x^4+a}{\left (\sqrt {b} x^2+\sqrt {a}\right )^2}} \operatorname {EllipticF}\left (2 \arctan \left (\frac {\sqrt [4]{b} x}{\sqrt [4]{a}}\right ),\frac {1}{2}\right ) \left (\sqrt {b} \sqrt {-c}-\sqrt {a} \sqrt {d}\right )}{4 \sqrt [4]{a} \sqrt {-c} d (b c+a d) \sqrt {b x^4+a}}+\frac {\sqrt {b c-a d} \arctan \left (\frac {\sqrt {b c-a d} x}{\sqrt [4]{-c} \sqrt [4]{d} \sqrt {b x^4+a}}\right )}{4 (-c)^{3/4} d^{3/4}}-\frac {\sqrt {a d-b c} \arctan \left (\frac {\sqrt {a d-b c} x}{\sqrt [4]{-c} \sqrt [4]{d} \sqrt {b x^4+a}}\right )}{4 (-c)^{3/4} d^{3/4}}+\frac {b^{3/4} \left (\sqrt {b} x^2+\sqrt {a}\right ) \sqrt {\frac {b x^4+a}{\left (\sqrt {b} x^2+\sqrt {a}\right )^2}} \operatorname {EllipticF}\left (2 \arctan \left (\frac {\sqrt [4]{b} x}{\sqrt [4]{a}}\right ),\frac {1}{2}\right )}{2 \sqrt [4]{a} d \sqrt {b x^4+a}}-\frac {\sqrt [4]{b} \left (\sqrt {b}+\frac {\sqrt {a} \sqrt {d}}{\sqrt {-c}}\right ) (b c-a d) \left (\sqrt {b} x^2+\sqrt {a}\right ) \sqrt {\frac {b x^4+a}{\left (\sqrt {b} x^2+\sqrt {a}\right )^2}} \operatorname {EllipticF}\left (2 \arctan \left (\frac {\sqrt [4]{b} x}{\sqrt [4]{a}}\right ),\frac {1}{2}\right )}{4 \sqrt [4]{a} d (b c+a d) \sqrt {b x^4+a}}-\frac {\left (\sqrt {b} \sqrt {-c}+\sqrt {a} \sqrt {d}\right )^2 (b c-a d) \left (\sqrt {b} x^2+\sqrt {a}\right ) \sqrt {\frac {b x^4+a}{\left (\sqrt {b} x^2+\sqrt {a}\right )^2}} \operatorname {EllipticPi}\left (-\frac {\left (\sqrt {b} \sqrt {-c}-\sqrt {a} \sqrt {d}\right )^2}{4 \sqrt {a} \sqrt {b} \sqrt {-c} \sqrt {d}},2 \arctan \left (\frac {\sqrt [4]{b} x}{\sqrt [4]{a}}\right ),\frac {1}{2}\right )}{8 \sqrt [4]{a} \sqrt [4]{b} c d (b c+a d) \sqrt {b x^4+a}} \]

[In]

Int[Sqrt[a + b*x^4]/(c + d*x^4),x]

[Out]

(Sqrt[b*c - a*d]*ArcTan[(Sqrt[b*c - a*d]*x)/((-c)^(1/4)*d^(1/4)*Sqrt[a + b*x^4])])/(4*(-c)^(3/4)*d^(3/4)) - (S
qrt[-(b*c) + a*d]*ArcTan[(Sqrt[-(b*c) + a*d]*x)/((-c)^(1/4)*d^(1/4)*Sqrt[a + b*x^4])])/(4*(-c)^(3/4)*d^(3/4))
+ (b^(3/4)*(Sqrt[a] + Sqrt[b]*x^2)*Sqrt[(a + b*x^4)/(Sqrt[a] + Sqrt[b]*x^2)^2]*EllipticF[2*ArcTan[(b^(1/4)*x)/
a^(1/4)], 1/2])/(2*a^(1/4)*d*Sqrt[a + b*x^4]) - (b^(1/4)*(Sqrt[b]*Sqrt[-c] - Sqrt[a]*Sqrt[d])*(b*c - a*d)*(Sqr
t[a] + Sqrt[b]*x^2)*Sqrt[(a + b*x^4)/(Sqrt[a] + Sqrt[b]*x^2)^2]*EllipticF[2*ArcTan[(b^(1/4)*x)/a^(1/4)], 1/2])
/(4*a^(1/4)*Sqrt[-c]*d*(b*c + a*d)*Sqrt[a + b*x^4]) - (b^(1/4)*(Sqrt[b] + (Sqrt[a]*Sqrt[d])/Sqrt[-c])*(b*c - a
*d)*(Sqrt[a] + Sqrt[b]*x^2)*Sqrt[(a + b*x^4)/(Sqrt[a] + Sqrt[b]*x^2)^2]*EllipticF[2*ArcTan[(b^(1/4)*x)/a^(1/4)
], 1/2])/(4*a^(1/4)*d*(b*c + a*d)*Sqrt[a + b*x^4]) - ((Sqrt[b]*Sqrt[-c] + Sqrt[a]*Sqrt[d])^2*(b*c - a*d)*(Sqrt
[a] + Sqrt[b]*x^2)*Sqrt[(a + b*x^4)/(Sqrt[a] + Sqrt[b]*x^2)^2]*EllipticPi[-1/4*(Sqrt[b]*Sqrt[-c] - Sqrt[a]*Sqr
t[d])^2/(Sqrt[a]*Sqrt[b]*Sqrt[-c]*Sqrt[d]), 2*ArcTan[(b^(1/4)*x)/a^(1/4)], 1/2])/(8*a^(1/4)*b^(1/4)*c*d*(b*c +
 a*d)*Sqrt[a + b*x^4]) - ((Sqrt[b]*Sqrt[-c] - Sqrt[a]*Sqrt[d])^2*(b*c - a*d)*(Sqrt[a] + Sqrt[b]*x^2)*Sqrt[(a +
 b*x^4)/(Sqrt[a] + Sqrt[b]*x^2)^2]*EllipticPi[(Sqrt[b]*Sqrt[-c] + Sqrt[a]*Sqrt[d])^2/(4*Sqrt[a]*Sqrt[b]*Sqrt[-
c]*Sqrt[d]), 2*ArcTan[(b^(1/4)*x)/a^(1/4)], 1/2])/(8*a^(1/4)*b^(1/4)*c*d*(b*c + a*d)*Sqrt[a + b*x^4])

Rule 226

Int[1/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b/a, 4]}, Simp[(1 + q^2*x^2)*(Sqrt[(a + b*x^4)/(a*(
1 + q^2*x^2)^2)]/(2*q*Sqrt[a + b*x^4]))*EllipticF[2*ArcTan[q*x], 1/2], x]] /; FreeQ[{a, b}, x] && PosQ[b/a]

Rule 415

Int[Sqrt[(a_) + (b_.)*(x_)^4]/((c_) + (d_.)*(x_)^4), x_Symbol] :> Dist[b/d, Int[1/Sqrt[a + b*x^4], x], x] - Di
st[(b*c - a*d)/d, Int[1/(Sqrt[a + b*x^4]*(c + d*x^4)), x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - a*d, 0]

Rule 418

Int[1/(Sqrt[(a_) + (b_.)*(x_)^4]*((c_) + (d_.)*(x_)^4)), x_Symbol] :> Dist[1/(2*c), Int[1/(Sqrt[a + b*x^4]*(1
- Rt[-d/c, 2]*x^2)), x], x] + Dist[1/(2*c), Int[1/(Sqrt[a + b*x^4]*(1 + Rt[-d/c, 2]*x^2)), x], x] /; FreeQ[{a,
 b, c, d}, x] && NeQ[b*c - a*d, 0]

Rule 1231

Int[1/(((d_) + (e_.)*(x_)^2)*Sqrt[(a_) + (c_.)*(x_)^4]), x_Symbol] :> With[{q = Rt[c/a, 2]}, Dist[(c*d + a*e*q
)/(c*d^2 - a*e^2), Int[1/Sqrt[a + c*x^4], x], x] - Dist[(a*e*(e + d*q))/(c*d^2 - a*e^2), Int[(1 + q*x^2)/((d +
 e*x^2)*Sqrt[a + c*x^4]), x], x]] /; FreeQ[{a, c, d, e}, x] && NeQ[c*d^2 + a*e^2, 0] && NeQ[c*d^2 - a*e^2, 0]
&& PosQ[c/a]

Rule 1721

Int[((A_) + (B_.)*(x_)^2)/(((d_) + (e_.)*(x_)^2)*Sqrt[(a_) + (c_.)*(x_)^4]), x_Symbol] :> With[{q = Rt[B/A, 2]
}, Simp[(-(B*d - A*e))*(ArcTan[Rt[c*(d/e) + a*(e/d), 2]*(x/Sqrt[a + c*x^4])]/(2*d*e*Rt[c*(d/e) + a*(e/d), 2]))
, x] + Simp[(B*d + A*e)*(A + B*x^2)*(Sqrt[A^2*((a + c*x^4)/(a*(A + B*x^2)^2))]/(4*d*e*A*q*Sqrt[a + c*x^4]))*El
lipticPi[Cancel[-(B*d - A*e)^2/(4*d*e*A*B)], 2*ArcTan[q*x], 1/2], x]] /; FreeQ[{a, c, d, e, A, B}, x] && NeQ[c
*d^2 + a*e^2, 0] && NeQ[c*d^2 - a*e^2, 0] && PosQ[c/a] && EqQ[c*A^2 - a*B^2, 0]

Rubi steps \begin{align*} \text {integral}& = \frac {b \int \frac {1}{\sqrt {a+b x^4}} \, dx}{d}-\frac {(b c-a d) \int \frac {1}{\sqrt {a+b x^4} \left (c+d x^4\right )} \, dx}{d} \\ & = \frac {b^{3/4} \left (\sqrt {a}+\sqrt {b} x^2\right ) \sqrt {\frac {a+b x^4}{\left (\sqrt {a}+\sqrt {b} x^2\right )^2}} F\left (2 \tan ^{-1}\left (\frac {\sqrt [4]{b} x}{\sqrt [4]{a}}\right )|\frac {1}{2}\right )}{2 \sqrt [4]{a} d \sqrt {a+b x^4}}-\frac {(b c-a d) \int \frac {1}{\left (1-\frac {\sqrt {d} x^2}{\sqrt {-c}}\right ) \sqrt {a+b x^4}} \, dx}{2 c d}-\frac {(b c-a d) \int \frac {1}{\left (1+\frac {\sqrt {d} x^2}{\sqrt {-c}}\right ) \sqrt {a+b x^4}} \, dx}{2 c d} \\ & = \frac {b^{3/4} \left (\sqrt {a}+\sqrt {b} x^2\right ) \sqrt {\frac {a+b x^4}{\left (\sqrt {a}+\sqrt {b} x^2\right )^2}} F\left (2 \tan ^{-1}\left (\frac {\sqrt [4]{b} x}{\sqrt [4]{a}}\right )|\frac {1}{2}\right )}{2 \sqrt [4]{a} d \sqrt {a+b x^4}}-\frac {\left (\sqrt {b} \left (\sqrt {b} \sqrt {-c}-\sqrt {a} \sqrt {d}\right ) (b c-a d)\right ) \int \frac {1}{\sqrt {a+b x^4}} \, dx}{2 \sqrt {-c} d (b c+a d)}-\frac {\left (\sqrt {b} \left (\sqrt {b}+\frac {\sqrt {a} \sqrt {d}}{\sqrt {-c}}\right ) (b c-a d)\right ) \int \frac {1}{\sqrt {a+b x^4}} \, dx}{2 d (b c+a d)}+\frac {\left (\sqrt {a} \left (\sqrt {b} \sqrt {-c}-\sqrt {a} \sqrt {d}\right ) (b c-a d)\right ) \int \frac {1+\frac {\sqrt {b} x^2}{\sqrt {a}}}{\left (1-\frac {\sqrt {d} x^2}{\sqrt {-c}}\right ) \sqrt {a+b x^4}} \, dx}{2 c \sqrt {d} (b c+a d)}-\frac {\left (\sqrt {a} \left (\sqrt {b} \sqrt {-c}+\sqrt {a} \sqrt {d}\right ) (b c-a d)\right ) \int \frac {1+\frac {\sqrt {b} x^2}{\sqrt {a}}}{\left (1+\frac {\sqrt {d} x^2}{\sqrt {-c}}\right ) \sqrt {a+b x^4}} \, dx}{2 c \sqrt {d} (b c+a d)} \\ & = \frac {\sqrt {b c-a d} \tan ^{-1}\left (\frac {\sqrt {b c-a d} x}{\sqrt [4]{-c} \sqrt [4]{d} \sqrt {a+b x^4}}\right )}{4 (-c)^{3/4} d^{3/4}}-\frac {\sqrt {-b c+a d} \tan ^{-1}\left (\frac {\sqrt {-b c+a d} x}{\sqrt [4]{-c} \sqrt [4]{d} \sqrt {a+b x^4}}\right )}{4 (-c)^{3/4} d^{3/4}}+\frac {b^{3/4} \left (\sqrt {a}+\sqrt {b} x^2\right ) \sqrt {\frac {a+b x^4}{\left (\sqrt {a}+\sqrt {b} x^2\right )^2}} F\left (2 \tan ^{-1}\left (\frac {\sqrt [4]{b} x}{\sqrt [4]{a}}\right )|\frac {1}{2}\right )}{2 \sqrt [4]{a} d \sqrt {a+b x^4}}-\frac {\sqrt [4]{b} \left (\sqrt {b} \sqrt {-c}-\sqrt {a} \sqrt {d}\right ) (b c-a d) \left (\sqrt {a}+\sqrt {b} x^2\right ) \sqrt {\frac {a+b x^4}{\left (\sqrt {a}+\sqrt {b} x^2\right )^2}} F\left (2 \tan ^{-1}\left (\frac {\sqrt [4]{b} x}{\sqrt [4]{a}}\right )|\frac {1}{2}\right )}{4 \sqrt [4]{a} \sqrt {-c} d (b c+a d) \sqrt {a+b x^4}}-\frac {\sqrt [4]{b} \left (\sqrt {b}+\frac {\sqrt {a} \sqrt {d}}{\sqrt {-c}}\right ) (b c-a d) \left (\sqrt {a}+\sqrt {b} x^2\right ) \sqrt {\frac {a+b x^4}{\left (\sqrt {a}+\sqrt {b} x^2\right )^2}} F\left (2 \tan ^{-1}\left (\frac {\sqrt [4]{b} x}{\sqrt [4]{a}}\right )|\frac {1}{2}\right )}{4 \sqrt [4]{a} d (b c+a d) \sqrt {a+b x^4}}-\frac {\left (\sqrt {b} \sqrt {-c}+\sqrt {a} \sqrt {d}\right )^2 (b c-a d) \left (\sqrt {a}+\sqrt {b} x^2\right ) \sqrt {\frac {a+b x^4}{\left (\sqrt {a}+\sqrt {b} x^2\right )^2}} \Pi \left (-\frac {\left (\sqrt {b} \sqrt {-c}-\sqrt {a} \sqrt {d}\right )^2}{4 \sqrt {a} \sqrt {b} \sqrt {-c} \sqrt {d}};2 \tan ^{-1}\left (\frac {\sqrt [4]{b} x}{\sqrt [4]{a}}\right )|\frac {1}{2}\right )}{8 \sqrt [4]{a} \sqrt [4]{b} c d (b c+a d) \sqrt {a+b x^4}}-\frac {\left (\sqrt {b} \sqrt {-c}-\sqrt {a} \sqrt {d}\right )^2 (b c-a d) \left (\sqrt {a}+\sqrt {b} x^2\right ) \sqrt {\frac {a+b x^4}{\left (\sqrt {a}+\sqrt {b} x^2\right )^2}} \Pi \left (\frac {\left (\sqrt {b} \sqrt {-c}+\sqrt {a} \sqrt {d}\right )^2}{4 \sqrt {a} \sqrt {b} \sqrt {-c} \sqrt {d}};2 \tan ^{-1}\left (\frac {\sqrt [4]{b} x}{\sqrt [4]{a}}\right )|\frac {1}{2}\right )}{8 \sqrt [4]{a} \sqrt [4]{b} c d (b c+a d) \sqrt {a+b x^4}} \\ \end{align*}

Mathematica [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 6 vs. order 4 in optimal.

Time = 10.19 (sec) , antiderivative size = 161, normalized size of antiderivative = 0.18 \[ \int \frac {\sqrt {a+b x^4}}{c+d x^4} \, dx=\frac {5 a c x \sqrt {a+b x^4} \operatorname {AppellF1}\left (\frac {1}{4},-\frac {1}{2},1,\frac {5}{4},-\frac {b x^4}{a},-\frac {d x^4}{c}\right )}{\left (c+d x^4\right ) \left (5 a c \operatorname {AppellF1}\left (\frac {1}{4},-\frac {1}{2},1,\frac {5}{4},-\frac {b x^4}{a},-\frac {d x^4}{c}\right )+2 x^4 \left (-2 a d \operatorname {AppellF1}\left (\frac {5}{4},-\frac {1}{2},2,\frac {9}{4},-\frac {b x^4}{a},-\frac {d x^4}{c}\right )+b c \operatorname {AppellF1}\left (\frac {5}{4},\frac {1}{2},1,\frac {9}{4},-\frac {b x^4}{a},-\frac {d x^4}{c}\right )\right )\right )} \]

[In]

Integrate[Sqrt[a + b*x^4]/(c + d*x^4),x]

[Out]

(5*a*c*x*Sqrt[a + b*x^4]*AppellF1[1/4, -1/2, 1, 5/4, -((b*x^4)/a), -((d*x^4)/c)])/((c + d*x^4)*(5*a*c*AppellF1
[1/4, -1/2, 1, 5/4, -((b*x^4)/a), -((d*x^4)/c)] + 2*x^4*(-2*a*d*AppellF1[5/4, -1/2, 2, 9/4, -((b*x^4)/a), -((d
*x^4)/c)] + b*c*AppellF1[5/4, 1/2, 1, 9/4, -((b*x^4)/a), -((d*x^4)/c)])))

Maple [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 4.14 (sec) , antiderivative size = 273, normalized size of antiderivative = 0.31

method result size
default \(\frac {b \sqrt {1-\frac {i \sqrt {b}\, x^{2}}{\sqrt {a}}}\, \sqrt {1+\frac {i \sqrt {b}\, x^{2}}{\sqrt {a}}}\, F\left (x \sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}, i\right )}{d \sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}\, \sqrt {b \,x^{4}+a}}-\frac {\munderset {\underline {\hspace {1.25 ex}}\alpha =\operatorname {RootOf}\left (d \,\textit {\_Z}^{4}+c \right )}{\sum }\frac {\left (-a d +b c \right ) \left (-\frac {\operatorname {arctanh}\left (\frac {2 b \,x^{2} \underline {\hspace {1.25 ex}}\alpha ^{2}+2 a}{2 \sqrt {\frac {a d -b c}{d}}\, \sqrt {b \,x^{4}+a}}\right )}{\sqrt {\frac {a d -b c}{d}}}+\frac {2 \underline {\hspace {1.25 ex}}\alpha ^{3} d \sqrt {1-\frac {i \sqrt {b}\, x^{2}}{\sqrt {a}}}\, \sqrt {1+\frac {i \sqrt {b}\, x^{2}}{\sqrt {a}}}\, \Pi \left (x \sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}, \frac {i \sqrt {a}\, \underline {\hspace {1.25 ex}}\alpha ^{2} d}{\sqrt {b}\, c}, \frac {\sqrt {-\frac {i \sqrt {b}}{\sqrt {a}}}}{\sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}}\right )}{\sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}\, c \sqrt {b \,x^{4}+a}}\right )}{\underline {\hspace {1.25 ex}}\alpha ^{3}}}{8 d^{2}}\) \(273\)
elliptic \(\frac {b \sqrt {1-\frac {i \sqrt {b}\, x^{2}}{\sqrt {a}}}\, \sqrt {1+\frac {i \sqrt {b}\, x^{2}}{\sqrt {a}}}\, F\left (x \sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}, i\right )}{d \sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}\, \sqrt {b \,x^{4}+a}}-\frac {\munderset {\underline {\hspace {1.25 ex}}\alpha =\operatorname {RootOf}\left (d \,\textit {\_Z}^{4}+c \right )}{\sum }\frac {\left (-a d +b c \right ) \left (-\frac {\operatorname {arctanh}\left (\frac {2 b \,x^{2} \underline {\hspace {1.25 ex}}\alpha ^{2}+2 a}{2 \sqrt {\frac {a d -b c}{d}}\, \sqrt {b \,x^{4}+a}}\right )}{\sqrt {\frac {a d -b c}{d}}}+\frac {2 \underline {\hspace {1.25 ex}}\alpha ^{3} d \sqrt {1-\frac {i \sqrt {b}\, x^{2}}{\sqrt {a}}}\, \sqrt {1+\frac {i \sqrt {b}\, x^{2}}{\sqrt {a}}}\, \Pi \left (x \sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}, \frac {i \sqrt {a}\, \underline {\hspace {1.25 ex}}\alpha ^{2} d}{\sqrt {b}\, c}, \frac {\sqrt {-\frac {i \sqrt {b}}{\sqrt {a}}}}{\sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}}\right )}{\sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}\, c \sqrt {b \,x^{4}+a}}\right )}{\underline {\hspace {1.25 ex}}\alpha ^{3}}}{8 d^{2}}\) \(273\)

[In]

int((b*x^4+a)^(1/2)/(d*x^4+c),x,method=_RETURNVERBOSE)

[Out]

b/d/(I/a^(1/2)*b^(1/2))^(1/2)*(1-I/a^(1/2)*b^(1/2)*x^2)^(1/2)*(1+I/a^(1/2)*b^(1/2)*x^2)^(1/2)/(b*x^4+a)^(1/2)*
EllipticF(x*(I/a^(1/2)*b^(1/2))^(1/2),I)-1/8/d^2*sum((-a*d+b*c)/_alpha^3*(-1/(1/d*(a*d-b*c))^(1/2)*arctanh(1/2
*(2*_alpha^2*b*x^2+2*a)/(1/d*(a*d-b*c))^(1/2)/(b*x^4+a)^(1/2))+2/(I/a^(1/2)*b^(1/2))^(1/2)*_alpha^3*d/c*(1-I/a
^(1/2)*b^(1/2)*x^2)^(1/2)*(1+I/a^(1/2)*b^(1/2)*x^2)^(1/2)/(b*x^4+a)^(1/2)*EllipticPi(x*(I/a^(1/2)*b^(1/2))^(1/
2),I*a^(1/2)/b^(1/2)*_alpha^2/c*d,(-I/a^(1/2)*b^(1/2))^(1/2)/(I/a^(1/2)*b^(1/2))^(1/2))),_alpha=RootOf(_Z^4*d+
c))

Fricas [F(-1)]

Timed out. \[ \int \frac {\sqrt {a+b x^4}}{c+d x^4} \, dx=\text {Timed out} \]

[In]

integrate((b*x^4+a)^(1/2)/(d*x^4+c),x, algorithm="fricas")

[Out]

Timed out

Sympy [F]

\[ \int \frac {\sqrt {a+b x^4}}{c+d x^4} \, dx=\int \frac {\sqrt {a + b x^{4}}}{c + d x^{4}}\, dx \]

[In]

integrate((b*x**4+a)**(1/2)/(d*x**4+c),x)

[Out]

Integral(sqrt(a + b*x**4)/(c + d*x**4), x)

Maxima [F]

\[ \int \frac {\sqrt {a+b x^4}}{c+d x^4} \, dx=\int { \frac {\sqrt {b x^{4} + a}}{d x^{4} + c} \,d x } \]

[In]

integrate((b*x^4+a)^(1/2)/(d*x^4+c),x, algorithm="maxima")

[Out]

integrate(sqrt(b*x^4 + a)/(d*x^4 + c), x)

Giac [F]

\[ \int \frac {\sqrt {a+b x^4}}{c+d x^4} \, dx=\int { \frac {\sqrt {b x^{4} + a}}{d x^{4} + c} \,d x } \]

[In]

integrate((b*x^4+a)^(1/2)/(d*x^4+c),x, algorithm="giac")

[Out]

integrate(sqrt(b*x^4 + a)/(d*x^4 + c), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {\sqrt {a+b x^4}}{c+d x^4} \, dx=\int \frac {\sqrt {b\,x^4+a}}{d\,x^4+c} \,d x \]

[In]

int((a + b*x^4)^(1/2)/(c + d*x^4),x)

[Out]

int((a + b*x^4)^(1/2)/(c + d*x^4), x)